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Abstract—From not disturbing a focused programmer to entertaining a restless commuter

waiting for a train, personal ubiquitous computing devices could greatly enhance their

interaction with humans, should these devices only be aware of their users’ cognitive

engagement. Despite impressive advances in the inference of humanmovement, physical

activity, routines, and other behavioral aspects, inferring cognitive load remains

challenging due to the subtle manifestations of users’ mental engagements via vital signal

reactions. These signals are traditionally captured with expensive, obtrusive, and

purpose-built equipment, preventing seamless cognitive load inference for human–

computer interaction adaptation. In this article, we present our achievements toward

enabling large-scale unobtrusive cognitive load inference. Our approaches rely onmining

sensor data collected by commodity wearable devices, and software-defined radio-based

wireless radars. We also discuss further related research avenues, as well as ethical

issues surrounding automatic cognitive load inference.
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Pennsylvania, and Florida. The reasons for these

crashes prompted the officials to declare a signif-

icant problem with distracted driving caused by

the use of mobile computing and communication

devices. Washington State enacted “DUI-E: driv-

ing under the influence of electronics,” a bill that

outlaws all use of handheld electronics behind

the wheel, allowing officers to pull a driver over

simply for picking up her phone. Yet, the law

is unlikely to hit its intended target, as research

shows that simply being aware of a recent smart-

phone notification, even without interacting with

a mobile device, results in as much distraction

and low performance in attention-demanding

tasks as if a person was actively using the

phone.1

Distractions claimed 3166 lives on American

roads in 2017, yet the impact of inconsiderate

interruptions initiated by pervasive computing

devices is not confined to driving only. Mobile

phones and instant messaging have penetrated

deep into the office culture, where they cause

reduced productivity and increased stress lev-

els.2 According to Basex’s estimates, in 2010, an

average knowledge worker lost 2.7 h each day

on unnecessary interruptions. The economic

impact of these interruptions translates to

roughly $751 billion in the United States alone.3

The worrying evidence we provide is not a

call for plunging our mobile devices into total

silence. Indeed, mobile notifications represent

the most appropriate means of initiating commu-

nication with a remote party and are essential

for receiving timely and relevant, sometimes life-

saving, information. Instead, following Mark

Weiser’s vision,4 we argue that the interaction

between humans and pervasive computers

should be made as seamless as possible. Despite

tremendous advances in computing and sensing

capabilities, our devices miss a key feature for

realizing the above vision—the ability to detect

when our attention is focused on a particular

task.

What does it mean for our attention to be

focused on something?Whydo some tasks require

more cognitive resources than others? Is there

anything today’s computers can sense that is

somehow related to a person’s cognitive engage-

ment? Are our mathematical tools mature enough

to reliably detect one’s cognitive engagement

purely from sensed data? Finally, can cognitive

load inference be brought to masses? Can it be

done unobtrusively and with cheap commodity

devices? This article aims to answer the above

questions and to provide guidelines for the

evolution of considerate pervasive computing

devices.

ATTENTION, COGNITIVE LOAD, AND
PHYSIOLOGICAL RESPONSES

Ashcraft defines attention as a mental pro-

cess of concentrating effort on stimuli or mental

events.5 It is essential to understand the underly-

ing mental processes, as well as the associa-

ted cognitive resources to manage attention

efficiently.

Architecture of Cognitive Processes

Anderson et al.’s adaptive control of thought-

rational architecture (ACT-R) is an experimen-

tally validated model that allows simulating

human cognition.6 The model is based on the

idea that distinct cognitive resources, represented

as modules, are responsible for perceiving and

interacting with the surrounding environment.

Each module is equipped with an individual

buffer in which information is stored as chunks—

single units of declarative knowledge. The proce-

dural resource coordinates the behavior of all

connected modules. To implement coherent and

goal-directed behavior, it selects production

rules by searching for patterns within the mod-

ules’ buffers. Each module can only place a single

chunk within its buffer at a time.7 ACT-R only sup-

ports the execution of a single task at a given

moment as modules that store immediate task-

related information or that keep track of active

goals can only represent one particular problem

state or goal at a time.

The threaded cognition theory8 extends the

ACT-R architecture to model multitasking behav-

ior by allowing multiple goals to be active and

stored in the goal module’s buffer. Each goal gen-

erates an associated thread—a component that

comprises all processing across mental resour-

ces to accomplish a particular task. Just like in

multithreaded programming, multiple threads

may be active at the same time. Yet, resources

are exclusive—only a single thread can be active
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in a particular mental resource at any moment in

time. Threads claim resources as soon as possi-

ble and release them once done with the proc-

essing, thus allowing other concurrent threads

to proceed. In the case of multiple threads com-

peting for the procedural resource, the least

recently processed thread will be selected. Fol-

lowing the concepts of the threaded cognition

theory, multitasking is then accomplished by

multiple concurrent threads, automatically

requesting, processing, and releasing resources.

Disrupted Thoughts

Interruptions are caused by external or

internal stimuli, incoming audio–visual notifica-

tions on a smartphone being an example of the

former, impulsive smartphone checking being

an example of the latter. Tasks signaled by

these stimuli might cause conflicts with other

tasks that are currently being processed. Typi-

cally, conflicts occur when two or more tasks

require the same mental resource at the same

time. In particular, Borst et al. investigate con-

flicts involving the problem state resource. The

authors build upon the threaded cognition the-

ory and examine why complex tasks seem to

cause stronger disruptions than simple tasks.7

Depending on its complexity, a task may or may

not require the problem state. At the moment

of interruption, if both the primary and the

interrupting task are complex, the problem

state of the primary task is stored in the declar-

ative memory where it starts to decay. On the

return from the interruption, the primary task’s

problem state has to be retrieved from the

memory, yet the process is tied with delays and

errors, which tend to be more detrimental the

longer the problem state has lingered in the

declarative memory.

Experimental results, evaluating resumption

time and errors when tasks of differing complexi-

ties are interrupted, confirm this theory. They

show that the negative effects of interruption are

correlated with task complexity—the disruption is

minimized when the task’s cognitive burden is light

enough not to require the problem state. This obser-

vation directs us to the preferred way to initiate

interaction in pervasive computing, the one

where interruptions are scheduled for moments of

light cognitive load. A similar interaction approach

has been proposed by Bailey et al. ,9 where the

authors manually constructed task models (for

office-related tasks) and empirically showed that

higher level task boundaries within the models

correspond with states of decreased cognitive

load. Instead of constructing task models to

detect periods of low cognitive load in advance,

in our work, we examine the ability to infer these

low-load periods directly.

Physiological Responses to Cognitive Load

When humans experience a psychophysio-

logical load, e.g., in the form of a demanding

task, the activation of the sympathetic nervous

system increases. The increased activation sub-

stantially speeds up certain processes within

the body (“fight-or-flight” response).10 It raises

the heart rate, sweating rate, breathing rate, and

blood pressure; the pupils dilate; the saliva flow

decreases; the heart-beats become equidistant;

the blood flow is restricted from the extremities,

and is redirected toward the vital organs. After

the load, the sympathetic nervous system

response slows down, the parasympathetic ner-

vous system inverts the physiological changes,

and initiates rest and repair processes. These

physiological changes can be captured via sen-

sors, and we list some commonly used sensors

in Table 1.

Traditionally, these signals have been mea-

sured in highly controlled environments using

specialized equipment. Recently, the desire for in

Table 1. Sensors used for monitoring physiological changes.

Device Measurement

Electrocardiography (ECG) sensor Heart activity

Galvanic Skin Response (GSR) sensor Sweating rate

Blood volume pulse (BVP) sensor Blood flow through vessels

Blood pressure sensor Blood pressure

Electroencephalography (EEG) sensor Brain activity

Electromyography (EMG) sensor Muscle activity

Contact skin temperature (ST) sensor Temperature of the skin

Breathing-rate sensor Breathing rate

Infrared camera Temperature of the skin

Camera-based eye tracker Pupil diameter
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situ knowledge of cognitive load has led to advan-

ces in physiological signal-based cognitive load

inference using commodity devices.11;12 In the fol-

lowing sections, we showcase our efforts in this

direction: “Commodity Wearables for Cognitive

Load Inference” section presents a smart wrist-

band-based cognitive load inference pipeline,

while the “Wireless Sensing for Cognitive Load

Inference” section presents Wi-Mind, a wireless

sensing system for cognitive load inference.

Unique in their ways, these systems fall under a

broader umbrella of recent research efforts in the

field of cognitive load inference in ubiquitous

computing (for a more general context, we refer

the reader to the work done by Anderson et al.).13

COMMODITY WEARABLES FOR
COGNITIVE LOAD INFERENCE

Approximately 70 million fitness wristbands,

smartwatches, and smart garments are sold

every year. With embedded arrays of sensors,

these devices represent an attractive source of

physiological data that may be used for cogni-

tive load inference. However, with constant pres-

sure to cut costs, sensors found in these devices

are cheap and often unreliable. Furthermore, we

must cope with the unrestricted nature of these

sensors’ usage—unlike with traditional lab-

based equipment, users of wearable devices can

walk around, make limb movements, or intro-

duce other artifacts that render the analysis of

sensor data challenging.

To assess the potential for inferring cognitive

load with low-cost wearables, we fitted volunteer

participants with Microsoft Band 2 fitness wrist-

bands, immersed them in situations designed to

elicit different cognitive load, and, via the wrist-

band, collected physiological data during the

experiment. We then constructed models that

aim to predict users’ cognitive engagement

based on the collected data.

Stimulating Cognitive Response and Collecting

Physiological Data

Our experiments are designed to replicate

sedentary work in an office, as we believe that

such situations benefit the most from intelligent

attention management. The experiments were

performed in a quiet, normal-temperature room

where a single participant was working on a PC

with the wristband strapped to her nondominant

arm. The total of 20 participants attended these

experiments. The wristband measured: intervals

between successive heartbeats (RR intervals),

galvanic skin response (GSR, sampled at 1 Hz),

skin temperature (ST, sampled at 1 Hz), and

accelerometer data (sampled at 8 Hz).

The study comprised of six cycles of

cognitive-load tasks. For each cycle, three varia-

tions of a randomly selected cognitive-load task

type were presented on the PC. The tasks, akin to

puzzles, were designed and previously validated

by Haapalainen et al.14 and include the following:

1) Gestalt Completion (GC) test, where the sub-

ject is asked to identify incomplete drawings; 2)

Hidden Pattern (HP) test, where the subject has

to decide whether a model image is hidden in

other comparison images; 3) Finding A’s (FA)

test, where the subject has to find the letter “a” in

presented words; 4) Number Comparison (NC)

test, where the subject has to decide whether or

not two displayed numbers are the same; 5) Pur-

suit test (PT), where the subject has to visually

track irregularly curved overlapping lines from

numbers on the left side of a rectangle to letters

on the opposite side; and 6) Scattered X’s (SX)

test, where the subject has to find the letter “X”

on screens containing random letters. The varia-

tions differed in the designed difficulty (i.e., easy,

medium, and difficult) and thus in the expected

cognitive load they elicit. After solving each of

the three variations, the participants filled the

NASA-TLX questionnaire to assess the subjective

cognitive load posed by the tasks.

Physiological Data Processing and Feature

Engineering

For the analysis, we take 60-s segments

before each NASA-TLX questionnaire. Tasks of

shorter duration were disregarded, as the delay

between the nervous system commands and

the corresponding physiological responses may

prevent reliable detection by wearable sensors.

We then filter the segmented data and extract

features from each segment.

Sweating is one of the most characteristic

responses to increased cognitive load. We con-

centrate on data collected by the wristband’s

GSR sensor, filter it using a sliding mean filter,
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and then extract the fast-acting (GSR responses)

component and the slow-acting (tonic) compo-

nent from the filtered signals. The fast-acting

component is used to calculate the number of

responses in the signal, the responses per min-

ute in the signal, and the sum of the responses.

The slow-acting component is used to calculate

the derivative of the tonic component, and the

difference between the tonic component and the

overall signal. In addition, from the filtered GSR

signal, we calculate: mean, standard deviation,

1st and 3rd quartile, quartile deviation, deriva-

tive of the signal, sum of the signal, sum of posi-

tive derivative, proportion of positive derivative,

total spectral power of the signal in five fre-

quency bands between 0 and 0.5 Hz with a 0.1 Hz

span. All of these features have been analyzed in

related studies on stress, emotions, and cogni-

tive load monitoring.15

The activation of the subject’s sympathetic

nervous system triggered by cognitive load also

“stabilizes” heart beating, leading to more uni-

form RR intervals. On the other hand, the rest

periods between the tasks reverse this process,

and the RR intervals become less regular, since

“A healthy heart is not a metronome.”16 Heart

rate variability analysis (HRV) is commonly used

to quantify the dynamics of the RR intervals. The

details on 12 HRV features we extract can be

found in our earlier work.12

Finally, from the ST signal and the magnitude

of the acceleration signal, we extract six statisti-

cal features: mean, standard deviation, quartile

deviation, derivative of the signal, coefficient of

variation, and difference between the maximum

and minimum value in a segment.

Inferring Cognitive Load

The feature extraction process represents

each segment by a set of features ready to be fed

into machine learning (ML) algorithms. In our

preliminary analysis,12 we discovered that differ-

ent task types require different models that con-

nect physiological responses to task difficulty.

This observation poses additional questions

about the types of cognitive load elicited by dif-

ferent task types, and we plan to inspect it fur-

ther in our future work. For now, however, our

first experiment focuses on task-specific models

aiming to predict a subjective measure, the

NASA-TLX, and an objective measure, the

designed task difficulty (easy/medium/difficult)

of the task at hand. The best performing

designed task difficulty predictor, a Naive Bayes-

ian model, achieved precision, recall, and accu-

racy of about 50%, which is an improvement

compared to the majority classifier’s 33% accu-

racy.12 While these figures are not very high, it

is encouraging that the model tends to confuse

the neighboring labels, i.e., easy–medium and

medium–difficult more than distant labels (i.e.,

easy–difficult).

Interaction in the pervasive computing

domain could be improved even if the devices

could not reliably detect our level of cognitive

engagement, but could only understand whether

we are cognitively engaged at all. Therefore, in

our second experiment, we construct models to

discern between moments when users were solv-

ing tasks and moments when users were explic-

itly told to rest. Furthermore, we compare

personalized models with general models. The

personalized models were evaluated using leave-

one-task-out for each person specifically. The

general models were evaluated using leave-one-

subject-out. Thus, they are completely person-

independent. We report the results achieved by

the Random Forest (RF) algorithm, since it is the

most stable ML algorithm among those tested

(Random Forest—RF, Support Vector Machine—

SVM, Gradient Boosting—GB, AdaBoost—AB,

KNN, Gaussian Naive Bayes—NB, and Decision

Tree—DT). The results are presented in Table 2.

Table 2. Precision and recall of task versus rest classification for

personalized and general models.

Model

Task Personalized RF General RF

Prec. Rec. Prec. Rec.

HP .72 .71 .73 .73

FA .77 .78 .80 .80

GC .61 .58 .47 .47

NC .68 .70 .73 .72

SX .71 .71 .78 .77

PT .57 .59 .67 .65

Average .68 .68 .70 .69
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Interestingly, the general RF performs slightly

better than personalized RF. This is probably

due to the size of the training data. The highest

precision and recall of 80% is achieved by the

general RF for the FA task.

The Microsoft Band 2 is equipped with an

array of sensors, but which of these sensors are

the most promising when it comes to cognitive

load inference? We retrained the General RF

model for each sensor separately and measured

the F1-score. The highest F1-score of 65% was

achieved by the model trained with RR-related

features, followed by acceleration- (F1-score of

63%), GSR- and skin temperature-related features

(both with an F1-score of 55%). Therefore,

detecting heart activity appears to be the most

promising way forward for cognitive load infer-

ence using wearable sensors.

The experimental results are also influenced

by the size of the dataset, the noise in the sensor

data, and the physiological characteristics of the

participants. To ameliorate these influences, one

might increase the number of participants, rely

on transfer learning methods to reuse labeled

data from similar studies, and further examine

the role of participants’ physiological and psy-

chological traits on the results.

WIRELESS SENSING FOR COGNITIVE
LOAD INFERENCE

The physiological reaction elicited by the

autonomic nervous system when a person is

under cognitive load also manifests through

body movements. For instance, intensified

breathing leads to faster chest movement, while

heartbeats lead to minute movements of the

breastbone. Wi-Mind, a system developed at the

University of Ljubljana, uses a software-defined

radio (SDR) radar to unobtrusively detect these

movements and infer one’s cognitive load

through an ML pipeline.

Detecting Movement

Wi-Mind’s wireless monitoring module is

based on Vital-Radio, a solution that uses fre-

quency modulated carrier wave (FMCW) radar

to pinpoint transmitted signal reflections corre-

sponding to motion coming from a person.17 It

then uses phase changes in the reflected signal

to detect small movements of the person’s body.

Our signal processing implementation consists

of a modified gr-radar extension for GNUradio

open-source SDR framework running on a

general-purpose computer. A commodity USRP

B210 SDR front-end board with two antennas, one

for transmission, and the other for the reception

of the signal reflected off a person’s body (see

Figure 1) is connected to the PC. The raw signal

corresponding to the phase of the reflected radio

waves flowing from the USRP to the PC contains

the information about the movements and is fun-

neled intoWi-Mind’s ML pipeline.

Extracting Breathing and Heartbeat Features

Wi-Mind extracts breathing-related features by

first filtering the raw signal to focus on move-

ments that may be caused by breathing. A nor-

mal breathing rate for an adult at rest is between

6 to 31 breaths per minute18 and is modulated

by task engagement, age, and other factors. To

ensure that even the lowest breathing rates are

not filtered out, yet to account for slow signal

drifts due to posture changes, we use an empiri-

cally derived 0.083 Hz (corresponding to five

breaths per minute) lower bound for the pass-

band filter to single out breathing. With the

upper bound of the filter, we aim to exclude

heart beat-related interference. The normal rest-

ing heart rate frequency starts at 1 Hz19 and is

reflected in signal changes that are an order of

magnitude smaller amplitude that breathing-

induced changes. Consequently, we decided to

use 1 Hz as the upper bound for the pass-band

filter that singles out breathing.

From the filtered signal, we first calculate the

Fast Fourier Transform (FFT), extract energy in

different spectral bands, and then single out the

highest peak in the frequency domain—this

Figure 1.Wi-Mind in action.
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corresponds to the breathing rate. Furthermore,

we calculate the difference between the average

breathing rate in the first half and the average

breathing rate in the second half of a time win-

dow. The change might indicate the start or the

end of solving a mental task. We augment the

above process with time-domain features, such

as respiratory rate variability. For this, we use a

peak detector on the filtered signal to pinpoint

the times at which inhales happen, and then

measure the interbreath interval. Finally, we cal-

culate statistical measures from the raw signal,

including mean, median, standard deviation, and

root mean square value, as these features have

been shown to be relevant for the inference of

high-level features from vital signals.20

Heartbeat-related features are produced in a

similar fashion. Yet, they are less reliable and

remain more difficult to detect than breathing-

related features due to much smaller chest

movements. Wi-Mind first filters the raw signal,

this time keeping frequencies between 0.83 and

2.5 Hz, corresponding to 50 and 150 heartbeats

per minute. Unlike with the breathing rate, the

highest peak of the filtered frequency domain

signal need not correspond to the heart rate.

Spillover from the much stronger breathing sig-

nal might lead to the second highest peak actu-

ally corresponding to the heart rate. Besides the

average heart rate, we calculate the difference

between the rate at the beginning and the end of

the time window, and HRV features. We extract

these from the time domain signal, using a peak

detector to identify heartbeats, and then calcu-

late the RR intervals, their variability, and other

related statistics (further details on extracted

features can be found in our previous work).21

Inferring Cognitive Load

The inference algorithm is the final part of

Wi-Mind’s ML pipeline. To build and test it, we

conducted experiments with 23 participants

exposed to the same set of tasks of different diffi-

culties as described in the “Commodity Wear-

ables for Cognitive Load Inference” section. As

users were solving the tasks seated in front of a

PC, Wi-Mind was transmitting and receiving the

reflected wireless signals and calculating the

above breathing and heartbeat-related features.

We connected these features with information

about a participant’s task engagement. The par-

ticipant was either engaged in a task of a particu-

lar objective difficulty (i.e., easy, medium, and

difficult) or resting between the tasks.

The first experiment investigated whether

wireless sensing can be used to detect a person’s

cognitive engagement. We used the same experi-

ment of six cycles of cognitive load tasks inter-

spersed with rest periods as in the study

described in the “Commodity Wearables for Cog-

nitive Load Inference” section. We divided the

sensed data into periods when a user was work-

ing on a task and periods when a user was rest-

ing. We trained different binary classifiers (KNN,

SVM, RF, and NB) to infer whether a user is busy

or resting, using leave-one-subject-out approach.

RF built upon the above-explained features

provides the highest inference accuracy—70%,

significantly above the 50% baseline. A closer

inspection of the data reveals notable differen-

ces among individuals. For example, one per-

son‘s resting breathing rate may fluctuate

between 7 and 13 breaths per minute, while

another person’s resting rate may fluctuate

between 8 and 22 breaths per minute. Conse-

quently, normalizing breathing rate in a way

that each user’s resting rate is the same leads

to slightly improved inference results, with RF

achieving 75% accuracy.

The second experiment investigated whether

we can detect the level of cognitive engagement

for a person who was actively working on a men-

tal task. A preliminary analysis of the subjective

feeling of cognitive load, measured via the NASA-

TLX questionnaire, indicated that designed diffi-

culties of different task types do not elicit diffi-

culty perceptions that are comparable across

tasks. For instance, GC task‘s medium difficulty

was often perceived to be more difficult than HP

task’s high difficulty instance.* Therefore, a com-

mon model for the designed difficulty prediction

is bound to fail, and we build a separate model

for each of the six task types.

The results of leave-one-subject-out cross-vali-

dation shown inTable 3 reveal varying predictabil-

ity potential of different task types (between 36%

and 44% accuracy, compared to 33% baseline),

*
We note that similar was observed in our study with wearables (see the

“Commodity Wearables for Cognitive Load Inference” section)
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with the highest success observed with the NC

task. We also attempted to answer a toned down

research question—can we discern among the

extremes of cognitive engagement

and detect whether a person was

solving an easy or a difficult version

of the same task. The results show

that for certain tasks, such as NC,

this is possible with slightly more

than 65% accuracy (cf., 50%

baseline).

Wi-Mind’s ML pipeline relies on carefully

engineered features about breathing and heart-

beats. Despite this, other features might provide

additional information that could lead to higher

accuracy of cognitive load inference. A neural

network trained on raw wireless phase signal

alleviates the need for crafting individual fea-

tures and may implicitly take into account phe-

nomena that are difficult to model via features,

yet potentially relevant for cognitive load infer-

ence (e.g., sighing). We construct a long short

term memory network and train it with raw sig-

nals corresponding to a person resting or work-

ing on a task. The network yields 75.2% accuracy

of cognitive engagement prediction, which is on

par with the best performing classical machine

learning algorithm—RF.

ROAD AHEAD
Our attention is precious, so everyone com-

petes for it: from ubiquitous applications on

our phones and wearables, to email, instant

messaging, TV, billboards and of course, fellow

humans. However, few of us manage the attention

well, possibly because evolution has not equipped

us to deal with so many stimuli. So rather than to

divert our attention, we should harness the power

of ubiquitous computing to help us manage it. We

envision future technology that will assess both

the level of cognitive load and the type of mental

resources currently engaged. The technology will

then evaluate incoming messages and tasks, and

decide when and whether to notify us about each

so that we will be able to focus on what matters.

In this article, we discuss our recent efforts

representing the initial steps toward efficient

attention management. We recognize the link

between physiological signals and a user’s cogni-

tive load, and build two systems, a wearable and

a wireless one, that unobtrusively infer cognitive

load. Compared to the state-of-the-art solu-

tions,14 our wearable-based sys-

tem relies on cheap commodity

devices, whereas our Wi-Mind

wireless system moves away

from any physical contact

between the user and the equip-

ment. In terms of the absolute

performance, the systems we

have developed are on par with those described

in the literature,22 yet less accurate than those

that rely on specialized equipment and lab set-

tings. Haapalainen et al. achieve around 80%

accuracy in two-class classification,14 whereas

our wearable and wireless sensing achieve 60%

accuracy for easy/difficult and 75% accuracy for

rest/busy classification. The accuracy gap might

stem from the modalities used as14 relies on ECG

and heat-flux-related features. Combining our

approaches with thermal imaging23 represents a

potentially promising avenue for future research

on unobtrusive cognitive load inference.

Despite the limited accuracy, the presented

systems could already enhance a number of

applications. For instance, being able to predict

when someone is starting or finishing a task, e.g.,

doing homework, calculating a spreadsheet, etc.,

even with 75% accuracy could lead to improved

notification management systems that, rather

than interrupting indiscriminately, aim to find

natural breaks as the most suitable moments for

information delivery.9

Table 3. Accuracy for binary and ternary task difficulty classification

with Wi-Mind for different task types. The best performing model for

the given task type is in the parentheses.

Accuracy

Task Ternary (Easy/Med/Diff) Binary (Easy/Diff)

HP .36 (SVM) .58 (RF)

FA .36 (KNN) .53 (KNN)

GC .40 (NB) .60 (RF)

NC .44 (KNN) .65 (RF)

SX .38 (RF) .59 (KNN)

PT .37 (SVM) .58 (RF)

“The ability to focus

attention on important

things is a defining char-

acteristic of intelligence.”

Robert J. Shiller
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Understanding Where Our Attention Is

The systems described in this article,

although demonstrating the potential for unob-

trusive inference with commodity devices, still

have some shortcomings with respect to the

accuracy of cognitive load detection. A compari-

son with lab studies conducted with specialized

equipment points to a modest gap between the

vital signs inference accuracy of these and our

approaches. Introduction of new sensors, such

as EEG, computer vision to capture facial expres-

sions, and multimodal processing (e.g., using

acceleration data to detect movements, and then

account for these when extracting heartbeats

from the PPG sensor)24 could bridge this gap.

Inferring cognitive engagement remains chal-

lenging even with vital signs detected perfectly.

Heartbeats, breathing and sweating do not only

proxy one’s task engagement, but also emotions,

stress, physical activity, thermal regulation, and

other aspects. Furthermore, cognitive load is a

complex concept that reflects a task’s inherent

complexity (i.e., intrinsic load), the complexity of

the task’s representation (i.e., extraneous load),

and the complexity of constructing the schema of

the task (i.e., germane load). It may well be that

accurate assessment of cognitive load requires

taking into account the nature of the task at hand

and adjusting the inference methodology accord-

ingly. For instance, the highest inference accu-

racy achieved by Wi-Mind, a wireless system

relying on breathing and heartbeat-related fea-

tures, happens when users are solving the num-

ber comparison task. The wearable approach

elaborated in the “CommodityWearables for Cog-

nitive Load Inference” section shows most prom-

ise when users are solving the finding ‘A’s task.

Measuring Required and Available Mental

Resources

In computers, multitasking is managed by

schedulers, which allocate computational resour-

ces based on the estimated task duration and

resource availability. Should we wish that ubiqui-

tous computingmanages our real-worldmultitask-

ing in a similar fashion, we need to empower it

with the understanding of the mental resource

requirements of real-world tasks. A great deal of

(meta) data might be needed for predicting the

complexity of an incoming task. For example, an

e-mail from a supervisor might request a student

to proofread a section of a research paper. The

system needs to infer which, and to what extent,

procedural, declarative, and perceptual resources

are needed to read the e-mail. Before deciding

whether to interrupt the student or not, the sys-

tem should also understand the user’s cognitive

capacities, current cognitive engagement, and

assess the potential for multitasking, among other

things. ACT-R and the threaded cognition model

(see the “Attention, Cognitive Load, and Physio-

logical Responses section) present a solid founda-

tion on which a holistic model providing a

continuous picture of one’s cognitive engagement

could be constructed. Modeling cognitive load

requires that a system maintain a computational

representation of ongoing mental processes and

the resources they occupy. A detailed model

might evenpredict bottlenecks inmental resource

allocation, thus ensuring that users are not over-

burdenedwith conflicting tasks.

Smooth and Ethical Attention Steering

We envision a future in which attention will

be steered by subtle cues, rather than grabbed

by buzzing notifications. Along which course

should the attention be steered? Arguably, users

should be in the flow—fully immersed in the task

at hand, absorbed by the activity, not bored, but

not frustrated either. The flow, however, defines

the target level of cognitive engagement, not the

content. Games and online social networking

applications are very good at getting their users

in the flow; yet, the overall effect on an individu-

al’s long-term well-being and productivity can be

negative. Should effective and reliable attention

management technology be available, it is easy

to see that it would be particularly valuable at

the workplace. But should we let our employers

decide how to manage our attention? Perhaps to

a degree, but ubiquitous technology makes it all

too easy for work to intrude in our private lives.

Attention is the most precious resource, and

users should have the final choice about the pur-

pose for which this resource is going to be

used.25 Consequently, we call for further debate

on where and to what extent attention should be

steered, as well as on how the steering can be

done in the least intrusive, yet the most trans-

parent and ethical way.
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