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Being able to detect stress as it occurs can greatly contribute to dealing with its negative health and eco-
nomic consequences. However, detecting stress in real life with an unobtrusive wrist device is a challeng-
ing task. The objective of this study is to develop a method for stress detection that can accurately,
continuously and unobtrusively monitor psychological stress in real life. First, we explore the problem
of stress detection using machine learning and signal processing techniques in laboratory conditions,
and then we apply the extracted laboratory knowledge to real-life data. We propose a novel context-
based stress-detection method. The method consists of three machine-learning components: a laboratory
stress detector that is trained on laboratory data and detects short-term stress every 2 min; an activity
recognizer that continuously recognizes the user’s activity and thus provides context information; and
a context-based stress detector that uses the outputs of the laboratory stress detector, activity recognizer
and other contexts, in order to provide the final decision on 20-min intervals. Experiments on 55 days of
real-life data showed that the method detects (recalls) 70% of the stress events with a precision of 95%.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

In 1908, Yerkes and Dodson presented the Yerkes–Dodson law
of empirical relationship between arousal and performance.
According to the Yerkes-Dodson law, the human performs at a
near-optimal level under a certain amount of stress. Consequently,
stress is not necessarily a negative process, but when present con-
tinuously it can result in chronical stress. Chronical stress has neg-
ative health consequences, such as raised blood pressure, bad
sleep, increased vulnerability to infections, decreased performance,
and slower body recovery [1].

Work-related stress is defined as a harmful psycho-
physiological response that occurs when the requirements of a
job do not match the capabilities, resources or needs of a worker,
which can lead to poor health and injury [2]. Regarding the eco-
nomic costs of stress, the European Commission estimated the
costs of work-related stress at €25 billion a year for 2013 [2]. This
is because work-related stress leads to an increased number of
accidents, absenteeism and decreased productivity. Therefore, hav-
ing an automatic stress-monitoring system would be beneficial for
the self-management of mental (and consequently physical) health
of workers [3], students, and others in the stressful environment of
today’s world.
The three characteristics that make the problem of monitoring
stress challenging and worth researching are:

� Stress is highly subjective. A stimulus that triggers the stress
process in one person may not trigger it in another.

� It is difficult to define the ground truth for the detection of
stress. Because of the high subjectivity and the continuous nat-
ure of the stress process, it is difficult to define the start, the
duration and the intensity of a stress event.

� Stress cannot be monitored directly. The stress response con-
sists of three components: physiological, behavioral and affec-
tive response [4]. A part of the physiological response (e.g.,
increased heart rate, increased sweating rate, etc.) can be mon-
itored directly using wearable devices (e.g., Microsoft Band fit-
ness tracker). However, there are no direct methods for
monitoring the other two components (behavioral and affective
response) of the stress response.

Recent technological advances have brought wearable bio-
sensors (e.g., ECG sensors [5], sweating-rate sensors [6],
respiration-rate body sensors [7], etc.) into everyday life. In our
experiments, we chose a wrist device because users are mostly
accustomed to wrist wearables (due to hand watches), and it is
one of the least obtrusive placements. However, the wrist is also
subject to frequent movement due to the hands activity, which
introduces noise in the data and therefore additionally complicates
the already challenging problem of stress detection.
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The current state of the art studies for automatic stress detec-
tion in real life [8,9] propose a methodology using a chest sensor.
In their approach, they first tune their machine-learning model
in a laboratory and then apply it in real-life environments using
some simplifications, e.g., they discard periods of moderate to high
activity. As future work they suggest smartwatches as a source of
physiological data, better handling of physical activity and includ-
ing context information in the process of stress detection. In our
study we tackle all of these issues by:

� Using only a wrist device as the source of physiological data.
� Recognizing the user’s activity by analyzing the acceleration
data from the wrist device using an award-winning machine-
learning method [28].

� Using real-life contextual information in the machine-learning
process to improve the performance of the method.

In addition, building upon state-of-the-art studies, we analyze
the problem of stress detection first in laboratory conditions using
an off-the-shelf wrist device equipped with bio-sensors, and apply
the extracted laboratory knowledge to real life, on data gathered
completely in the wild. In addition to laboratory knowledge, real-
life context information is extracted so the method may be suc-
cessfully applied to real-life data. The context information is
required to distinguish between psychological stress in real life
and the many situations which induce a similar physiological arou-
sal (e.g., exercise, eating, hot weather, etc.).

The proposed method is evaluated on 55 days of real-life data
from 5 subjects. Real-life evaluation is poorly explored in the
related work. It poses numerous problems, which are discussed
in this paper. Among them are: how to gather the real-life data,
how to segment the data, and how to label the data. In this study
we additionally provide guidelines for how to tackle these issues,
which is an additional improvement compared to the related work,
since the majority of the related-work methods for stress detection
are tested only on laboratory data.

The rest of the paper is organized as follows: in Section 2, an
overview of the related work on stress detection is presented. In
Section 3, the method for stress detection in constrained environ-
ments and its evaluation are presented. In Section 4, the context-
based method for stress detection in unconstrained environments
and its evaluation are presented. In Section 5, practical usage of the
context-based method for stress detection is presented. Finally,
Section 6 summarizes the study, and presents discussion and ideas
for future work.
2. Related work

The analysis of the related work on stress detection through the
prism of computer science shows that the focus shifts from stress
detection in a constrained environment using less comfortable sen-
sors to stress detection in an unconstraint environment using more
comfortable sensors. The pioneers in this field are Healey and
Picard who showed in 2005 that stress can be detected using phys-
iological sensors [10]. With the advance of the technological
devices equipped with physiological sensors, the method, which
in 2005 required intrusive wires and electrodes, can finally be
implemented comfortably.

In the period 2005–2016, various studies were conducted to
implement stress detection using a combination of signal process-
ing and machine learning (ML). Most of them used data from a res-
piration (Resp.) sensor [8,10,11], ECG sensor [8,10,11], heartrate
(HR) sensor [12], acceleration (ACC) sensor [13,14], electrodermal
activity (EDA) sensor [8,10,11,14,15], blood volume pulse (BVP)
sensor [18] and electromyogram (EMG) sensor [10,19]. Some are
more constrained, either physically (e.g., brain activity analysis
[20]) or with respect to privacy (e.g., analyzing the user’s audio
or video [21]). In our study we use a device that provides acceler-
ation, BVP, EDA, HR, inter-beat interval (IBI), and skin temperature
(ST) data.

A key difference between previous approaches in the related
work is the environment for which they are intended. As with
many scientific problems, the problem is first analyzed in con-
strained environments, e.g., a laboratory [8,17], office [16], car
(analysis while driving) [10], bed (analysis while sleeping) [11],
and call center [15]. One step closer to real life are Ramos et al.
[13], Mohino-Herranz et al. [22] and Lu et al. [23], who presented
studies in which the subjects are allowed to be active based on a
predefined scenario.

Very few approaches are tested in a completely unconstrained
environment. Sano et al. [14] collected 5 days of data for 18 partic-
ipants using wrist-worn sensors (accelerometer and EDA) and
smartphone (calls, SMS, location and screen on/off) for stress
detection in real-life environments. The reported accuracy for a 2
class problem is 74% by using 10-fold cross-validation. They did
not present results for person-independent models, and the
wrist-worn accelerometer data is not used for distinguishing EDA
caused by physical activity or stressful event, which is something
that we are proposing in our study.

Adams et al. [24] collected data from seven participants as they
carried out their everyday activities over a ten-day period. They
used smartphone audio-sensing and a wrist-worn EDA sensor.
They analyzed correlations between stress self-reports and smart-
phone audio-sensing. They did not use machine learning to detect
stress. They concluded that context information is needed to dis-
tinguish between pleasant and negative experiences. Our proposed
machine-learning method exploits context information to detect
stress.

Wang et al. [25] and Bauer at al. [26] presented studies in which
smartphone data was analyzed to detect behavioral changes
related to stress, but they did not build models for stress detection.
In our previous work, we used the data from the Wang’s et al. [25]
study to build machine-learning models for stress detection based
only on the smartphone data. The conclusion was that only person-
dependent models perform accurately enough [27].

Finally, in 2015 Hovsepian et al. [8] proposed cStress, a method
for continuous stress assessment in real life, and in 2016, cStress is
used in another real-life study [9]. They proved that stress can be
detected using a chest belt which provides respiration and electro-
cardiogram (ECG) data. Building upon their guidelines for future
work, we used the Empatica E3 and E4 wrist devices as the source
of data, and our proven activity-recognition algorithms [28] for
handling user activity and providing context information for the
stress detection in real life.

This paper extends our previous short papers [29,30] which pre-
sent the main idea of the method for stress detection. As a signif-
icant improvement in this paper, the method and the
experimental results are described thoroughly for the first time.
We also present additional and improved experimental results.

Table 1 presents a summary of the related work described in the
previous subsections. The studies are grouped with respect to the
environment in which they are performed (constrained – a labora-
tory, a car, a bus; semi-constrained – a laboratory with physical
activities; unconstrained – completely in real life). Additionally
we present the sensors used in the studies, the type of stressor
and the number of participants. This study falls into two cate-
gories. On one hand we have experiments performed in con-
strained environments (in laboratory) and on the other hand we
have experiments performed in unconstrained environments
(real-life). The sensors used are BVP, EDA, ST, ACC, which besides
the raw data also provide HR and IBI data. The stressors we analyze



Table 1
Related-work summary.

Study Sensors Type of stressor #Participants

Constrained environments
Healey et al. [15] Resp., ECG, EDA, EMG Driving a car 24
Sierra et al. [12] HR and EDA Hyperventilation, speaking 80
Wijsman et al. [19] Resp., ECG, EDA, and EMG Cognitive tasks 30
Hernandez et al. [15] EDA Call center 9
Mellilo et al. [17] ECG Student exam 42
Zhai et al. [16] EDA, BVP, PD*, ST Cognitive tasks 32
Muaremi et al. [11] Resp., ECG, EDA, ST Analysis while sleeping 10
Rodrigue et al. [50] ECG Driving bus 36

Semi-constrained environments
Ramos et al. [13] Resp., HR, EDA, ST, ACC Scenario & activity 20
Mohino-Herranz et al. [22] ECG, TEB* Scenario & activity 40
Lu et al. [23] EDA, audio analysis Scenario 14

Unconstrained environments
Hovsepian et al. [8] Resp., ECG, ACC 2 � Scenario, real-life 24, 26, 30
Sarker et al. [9] Resp., ECG, ACC Real life 38
Sano et al. [14] EDA, ACC, smartphone Real life 18
Adams et al. [24] EDA and audio analysis Real life 7
Bauer et al. [26] Smartphone Real life, student exams 7
Wang et al. [25] Smartphone Real life, student exams 48
Gjoreski et al. [27] Smartphone Real life, student exams 48
Gjoreski et al. [29,30] BVP, EDA, ST, ACC Cognitive tasks, real life 21, 5

* TEB – Thoracic electrical bioimpedance. * PD – pupil diameter.
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are a cognitive task (in the laboratory experiments) and stressors
from real life. The number of participants is 21 in the laboratory
experiments, and 5 in the real-life experiments. The number of
participants in the real-life experiments is low, however, the over-
all data gathered sums up to 55 days of real-life data.
Table 2
Mean STAI score for the laboratory data.

Type Before Easy Medium Hard

STAI score 10.95 13.33 14.05 13.81
3. Stress detection in constrained environments

The term ‘‘constrained environments” implies that the method
for stress detection is developed using constraints, e.g., stress
detection while driving [10], stress detection while sleeping)
[11], stress detection in a laboratory [19], etc. These constraints
significantly simplify the detection by discarding real-life situa-
tions which induce a response of the human body similar to the
stress response (e.g., physical exercise, eating, hot weather, etc.).
Due to the simplifications, the use of these methods is limited to
the environment for which they are developed. However, besides
the limited use, developing a method in constrained conditions
allows for detailed analysis of the stress response. For this reason,
we performed laboratory experiments in our study.

In the next subsections, first the laboratory data is described,
then the method for stress detection and finally the experimental
results are presented.

3.1. Laboratory experimental setup

For collecting the laboratory data we used a standardized
stress-inducing experiment [31]. Additionally, baseline (no-
stress) data was recorded on a separate day when subjects were
relaxed. For the stress-inducing experiments, a web application
was developed in collaboration with psychologists. The application
implements a variation of the stress-inducing method presented
by Dedovic et al. [31]. The main stressor is solving a mental arith-
metic task under time and evaluation pressure. In short, a series of
randomly generated equations were presented to subjects, who
provide answers verbally. The time given per equation was dynam-
ically changing. For each two consecutive correct answers the time
was shortened by 10%, and for each two consecutive wrong
answers the time was increased by 10%. Each session consisted
of three series of equations with increasing difficulty: easy,
medium and hard. Each series of equations lasted for five minutes.
For motivation, a reward was promised to the top three partici-
pants. After each stage, the participant was shown a false ranking
score, positioning him/her in the top five, this way motivating
him/her to try harder in the next stage and try to win the reward.
The application is available on-line: http://dis.ijs.si/thestest/.

The experiments were organized with respect to the four pre-
conditions for a situation to induce a stress response as presented
by Lupien et al. [32]. These are:

� Novel for the subjects because none of them had attended sim-
ilar experiments.

� Unpredictable because none of them knew how exactly the
experiments were organized.

� Not controllable because the subjects had to follow strict
instructions which were given while the experiments were
being executed.

� A social evaluative threat because rankings were available on-
line and the subjects were competing against each other.

During the experiment, there were no movement constraints,
making it as close as possible to real-life sedentary situations.
3.2. Statistical analysis and labelling of the laboratory data

Four Short STAI-Y anxiety questionnaires [26] were filled by
each participant: before the experiment (1), and after the easy
(2), medium (3) and hard session (4). The mean STAI score is pre-
sented in Table 2. We performed statistical analysis using repeated
measures ANOVA [33]. The resulting p-value was 0.0014, confirm-
ing that there is a statistically significant difference between the
answers of the different stages (before, easy, medium and hard
stage).

http://dis.ijs.si/thestest/


Table 3
Laboratory data overview. The number of participants, age
(mean and standard deviation) and duration in minutes for
the three levels (No Stress, Low Stress and High stress).

Data

# Participants 21
Age 28 ± 4

No Stress – overall duration 840 min
Low Stress – overall duration 356 min
High Stress – overall duration 368 min
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Fig. 2. Clean and noisy BVP signal from Subject 5.
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The answers of the STAI questionnaire were used for subject-
specific labelling of the data. For each subject, the period before
answering the STAI questionnaire in which they achieved the low-
est score is labeled as low stress, and for each +3 STAI points (the
statistical tests showed that difference of 2.38 is significant), the
stress label is increased by one, thus we get no stress (baseline
data), low stress (lowest STAI score), medium stress (lowest STAI
score +3) and high stress (lowest STAI score +6). In the final exper-
iments the medium and high stress were merged because only two
subjects achieved a high level of stress, so we had three degrees of
stress: no stress, low and high. Table 3 presents an overview of the
labeled laboratory data.
60 
65 
70 
75 
80 
85 
90 

He
ar

t r
at

e 
(b

pm
) 

Regression line (slope + intercept)  
y = 0.0292x + 70.53 
3.3. Machine-learning method for stress detection in constrained
environments

For the creation of the laboratory stress-detection classifier, we
used the machine-learning pipeline presented in Fig. 1. First, the
data was stored locally on the Empatica device, then transferred
to a computer where the rest of the processing was performed.
The method contains six phases: segmentation, filtering, feature
extraction, feature selection, model learning and evaluation of
the models. In the next subsections, each stage is described in
detail.

The segmentation refers to the segmentation of the data into
windows used for extracting the features. We experimented with
window lengths from 30 s to 300 s. The experimental results are
presented in Section 3.3.7.

The filtering methods are specific for each data type (e.g., the
BVP signal requires a different filtering technique than the EDA sig-
nal), and are described in Sections 3.3.1–3.3.6 together with the
feature-extraction phase.

In the feature extraction phase, numerical features are
extracted from each data window using statistical functions,
regression analysis and frequency and time analysis, depending
on the type of the signal.
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55 
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Fig. 3. HR signal provided by Empatica for Subject 5.
3.3.1. Feature extraction from the BVP data
The Empatica device provides BVP data extracted from a PPG

(Photoplethysmography) sensor for which they use a proprietary
algorithm. The measurement unit is a fraction of nanoWatt (nW)
Fig. 1. Laboratory learning met
which represents the difference of light absorption observed by a
light receiver in the PPG sensor. The sampling frequency is 64 Hz.
Fig. 2 shows an example 5 s of clean (black) and noisy (grey) BVP
data provided by the Empatica device. The clean data was collected
during a low-movement period (probably sleeping). It can be
clearly noticed that it is a periodical signal, which represents the
activity of the heart. The Empatica device exploits this periodic fea-
ture to extract the duration between heartbeats. However, the
noisy data is BVP provided during a high-movement period. These
signals present the problem when analyzing data from wearable
devices: the noise in the data and the disturbances from the
environment.

For this reason, prior to the feature extraction phase, the BVP
signal is filtered using winsorization [34]. Winsorization is a statis-
tical method for removing the outlier values over the nth and 100 –
nth percentile (experimentally n was set to 2). From the filtered
signal, statistical features were computed: standard deviation,
20th percentile, 80th percentile and quartile deviation (75th per-
centile – 25th percentile).

3.3.2. Feature extraction from the HR data
The Empatica device provides the average heart rate (extracted

from the BVP signal) with a sampling frequency of 1 Hz. Fig. 3 pre-
sents example HR data provided by the device. The HR signal is
already filtered by the device. From this signal the following
hod for the stress detector.
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features were calculated: mean, standard deviation, percentiles,
quartile deviation (75th percentile – 25 percentile), and slope
and intercept of a fitted regression line.
Fig. 5. EDA signal and detected responses for Subject 5.
3.3.3. Feature extraction from the IBI data
The Empatica device provides time between individual heart-

beats (IBI data) extracted from the BVP data. This data contains a
timestamp and duration of the detected heartbeats. For detection
they are using a proprietary algorithm, which provides IBI data
only in moderate to low-movement periods. Since the Empatica
device does not provide IBI data in high-movement periods, the
IBI data is not continuous, thus it requires additional filtering and
segmentation.

To perform the frequency analysis, a continuous stream of IBI
data points must be detected in a given data window. If the stream
is not continuous (e.g., the time between two IBI data points is
higher than 2 s), the data from that window is disregarded. This
introduces a tradeoff between the number of missing values for
the features calculated using frequency analysis (the longer the
continuous stream of neighboring intervals has to be, the longer
the person needs to be still to gather the data), and the quality of
the spectrum used for the frequency analysis (the longer the
stream, the better the resolution of the power spectrum). We used
a window of 32 continuous samples, which – for an average heart
rate of 64 bpm – requires the person to be still for around 30 s.
Since the data window can be bigger than 30 s, the power spec-
trum is calculated as the average of the power spectrums over all
continuous IBI samples in one data window. Fig. 4 presents a
power spectrum of the IBI samples for one data window of 300 s.
The frequency domain features were the total spectral power of
all IBI samples in power bands up to 0.04 Hz, between 0.003 and
0.04 Hz, between 0.04 and 0.15 Hz, and between 0.15 and 0.4 Hz,
and the ratio of low (0.04–0.15 Hz) to high (0.15–0.4 Hz) frequency
power.

The time-domain features were the mean of the IBI samples, the
standard deviation of the IBI samples, the square root of the mean
of the squares of the differences between adjacent IBI samples, and
the percentage of the differences between adjacent IBI samples
that are greater than x ms (x = 20, 50, 70).
3.3.4. Feature extraction from the EDA data
Electrodermal activity refers to electrical changes that arise

when the skin receives specific signals from the brain. These
changes may be due to emotional activation, cognitive workload
or physical exertion. The electrical change is enough for the EDA
sensor to capture it. The Empatica E4 device captures the change
in the electrical conductance using two electrodes attached to
the wristband. By flowing a minuscule amount of current between
the electrodes, the device measures the conductivity on the wrist.
The data unit is micro Siemens (lS) and the frequency is 4 Hz.
Fig. 4. Power spectrum of the IBI data in a data window of 300 s for Subject 5.
From the EDA signal (Fig. 5) the following features were calcu-
lated: mean, standard deviation, 20th percentile, 80th percentile,
quartile deviation (75th percentile – 25 percentile), and the slope
and intercept of a fitted regression line. Additionally, an algorithm
for peak detection [35] was used to detect the EDA responses –
peaks in the EDA signals. This enabled additional features: the
number of responses, the power of responses, the number of signif-
icant responses (responses which have a value over some 1.5 mS)
and the power of significant responses.
3.3.5. Feature extraction from the ST data
The ‘‘fight-or-flight” response restricts the blood flow from the

extremities and increases the blood flow to the vital organs. This
peripheral vasoconstriction produces changes in the skin tempera-
ture on the extremities including hands, which can indicate stress
and its intensity [36]. The Empatica device provides peripheral skin
temperature data with a frequency of 4 Hz. From the ST signal we
extracted the features: mean temperature, the slope and intercept
of a fitted regression line.
3.3.6. Feature extraction from the acceleration data
The Empatica device provides 3-axis accelerometer data with a

sampling frequency of 32 Hz.
This data was only used in the real-life experiments for recog-

nizing the subject’s activities (‘‘lying”, ‘‘sitting”, ‘‘standing”, ‘‘walk-
ing”, ‘‘running” and ‘‘cycling”). The data was left out in the
laboratory experiments because the subjects had to sit in front of
a computer, whereas during the ‘‘no-stress” scenario, the subjects
were allowed to behave normally (most of them were working
on a computer and moving around freely). The difference in the
scenarios/activities may be reflected in the acceleration data.
3.3.7. Feature selection
The idea of the feature-selection method is to remove corre-

lated and ‘‘non-informative” features. Correlation between the
features is expected because several features are extracted from
one data source (e.g., several features are extracted from the BVP
signal, several from the HR signal, etc.). Additionally, non-
informative features are considered those that have a low
information gain. The information gain metric evaluates the worth
of a feature by measuring the information they carry about the
class [37].

The proposed method includes several main steps: rank fea-
tures by the information gain, calculate the correlation coefficients
between features, evaluate different subsets of features (selected
based on information-gain rankings and correlation coefficients)
using the leave-one-subject-out (LOSO) technique, and finally
provide the best performing feature set. The pseudocode for the
feature selection method is provided in Algorithm 1.



164 M. Gjoreski et al. / Journal of Biomedical Informatics 73 (2017) 159–170
3.3.8. Model learning and evaluation
For the model learning we used machine-learning algorithms as

implemented in the WEKA machine-learning toolkit. We experi-
mented with a variety of ML algorithms:

� Majority classifier – always predicts the majority label. This is a
baseline model.

� J48 – an algorithm for building a decision tree (DT) [38].
� Naïve Bayes – an algorithm for building a simple probabilistic
classifier based on the Bayes’ theorem with strong indepen-
dence assumptions between the features [39].

� KNN – an algorithm which provides a prediction based on k
training instances nearest to the test instance [40].

� SVM – an algorithm for building a classifier where the classifi-
cation function is a hyperplane in the feature space [41].

� Bagging –– an ensemble algorithm which learns base models
on subsets of the training data with the purpose of reducing
variance and avoiding overfitting [42].

� Boosting – an ensemble algorithm which learns models on sub-
sets of the training data and ‘‘boosts” the weights of misrecog-
nized instances allowing for the models in the ensemble to
focus on the misclassified instances [43].

� Random Forest – an ensemble algorithm which learns base
decision trees by sub-setting the feature set [44].

� Ensemble Selection – an ensemble algorithm for combining ML
models built with various ML algorithms (e.g., in our experi-
ments we used a combination of J48, KNN, Naïve Bayes, Boost-
ing, SVM, and RF [45]).
Algorithm 1 (Feature selection method).
For model evaluation we used the LOSO cross-validation tech-
nique. The models are learned from all the data except the data
of one subject, which is used as the test data. This procedure is
repeated for each subject in the dataset (21 in the laboratory data-
set), and the results are averaged. The LOSO cross-validation pro-
vides information about the performance of the models on data
from a new subject, who has not been included in the training.
Thus, it evaluates the generalization performance of the model.
The evaluation metrics used for comparing the models are:
accuracy (1), precision (2), recall (3) and F1 score (4). The accuracy
provides information about the percentage of instances that were
classified correctly by the model. The precision and the recall are
metrics that provide label-specific information. The precision pro-
vides information about how many instances the model classified
correctly when predicting the label X (where X can be ‘‘no stress”,
‘‘low stress”, and ‘‘high stress”). The recall provides information
about how many instances out of all instances labeled with the
label X were correctly classified by the model. The F1 score combi-
nes precision and recall, since the precision and recall provide dif-
ferent information (e.g., one model can have a high recall (=1) and
a low precision for the label ‘‘low stress” if it classifies each
instance as ‘‘low stress”).

Accuracy ¼ Correctly predicted stress level
Total number of instances

ð1Þ

Precision ¼ Correctly predicted stress level X
Total predictions of level X

;X ¼ ð0;1;2Þ ð2Þ

Recall ¼ Correctly predicted stress level X
Total instances of level X

;X ¼ ð0;1;2Þ ð3Þ

F1 score ¼ 2 � ðPrecision � RecallÞ
Precisionþ Recall

ð4Þ
3.4. Laboratory experimental results

On the laboratory dataset we performed two types of
experiments, windowing experiments and feature-selection
experiments. The windowing experiments provide a performance
comparison between the models by varying the size of the data
window used for the feature extraction. The feature-selection
experiments provide performance comparison between the mod-
els using different subsets of the extracted features. For these
experiments, we used an empirically chosen sliding window of
5 min with a 2.5 min overlap.



Table 4
Accuracy on the laboratory data for varying data-window size and varying ML algorithms using LOSO evaluation.

Data-window size in minutes SVM Random Forest Boosting Bagging KNN Naïve Bayes Decision Tree Ensemble Selection Majority

0.5 0.67 0.60 0.59 0.62 0.53 0.59 0.52 0.53 0.55
1.0 0.67 0.62 0.56 0.59 0.53 0.60 0.58 0.53 0.55
1.5 0.67 0.63 0.60 0.59 0.52 0.61 0.59 0.53 0.55
2.0 0.67 0.65 0.61 0.61 0.53 0.61 0.55 0.53 0.55
2.5 0.67 0.66 0.61 0.61 0.55 0.62 0.56 0.53 0.55
3.0 0.67 0.65 0.62 0.65 0.56 0.62 0.56 0.54 0.55
3.5 0.68 0.67 0.62 0.65 0.56 0.62 0.56 0.54 0.55
4.0 0.68 0.66 0.64 0.64 0.58 0.62 0.59 0.54 0.55
4.5 0.69 0.66 0.64 0.64 0.63 0.62 0.53 0.54 0.55
5.0 0.70 0.68 0.67 0.61 0.64 0.62 0.59 0.54 0.55
5.5 0.71 0.69 0.66 0.61 0.64 0.62 0.58 0.55 0.55
6.0 0.71 0.69 0.66 0.58 0.65 0.62 0.58 0.55 0.55

Table 5
Confusion matrix for the FS-SVM model using LOSO evaluation. Each number
represents an instance with a data-window duration of 5 min.

No Stress Low Stress High Stress

No Stress 308 15 14
Low Stress 33 68 40
High Stress 28 38 73

Precision 0.84 0.56 0.58
Recall 0.91 0.48 0.53
F1 score 0.87 0.52 0.55

Accuracy 0.73
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3.4.1. Windowing experiments
For the windowing experiments we used the data from all sen-

sors (except the accelerometers) and all extracted features. The
experiments were performed with a varying data-window size.
We started the experiments with a data-window size of 30 s and
increased it up to 360 s (6 min, which was the duration of one ses-
sion in the laboratory experiments) in increments of 30 s. The over-
lap between the data windows was set to the size of the data
window decreased by 25 s, which is maximum overlap size with
respect to the minimum window size of 30 s.

Table 4 presents the results for the experiments with varying
data-window sizes. The rows represent the data-window size
and the columns represent the accuracy of the models. It can be
seen that all of the models except those built with Bagging achieve
a higher accuracy for bigger data-window size. In addition, the best
performing algorithm is SVM for each data-window size.

3.4.2. Feature-selection experiments
For the feature-selection experiments we compared the perfor-

mance of the SVM model using subsets of features. The subsets
were selected on a sensor-specific base (BVP, ST, EDA, HR and
IBI), one feature set is generated for the PPG sensor which includes
BVP, HR and IBI data, and one additional feature set was generated
using the feature-selection algorithm described in Section 3.3.7.

Fig. 6 presents the results for the feature selection experiments.
Each bar represents different feature set used for the experiments.
The best performance is achieved when the algorithm uses the
combination of all sensors, i.e., all features or features from all sen-
sors selected using the feature selection algorithm. When sensor-
specific features are used, PPG combination archives highest
results followed by the IBI and HR sensor data which perform
slightly better than the other sensor-specific feature sets.

In addition, we present the confusion matrix for the FS-SVM
model built using the selected features and a data window of
5 min with 2.5 min overlap. The confusion matrix in Table 5 pre-
sents the results for a 3-class problem (‘‘No Stress” vs. ‘‘Low Stress”
0.73 0.73 
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0.7 

BVP ST EDA HR IBI PPG Feature 
Selection 

All 
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Accuracy 

Fig. 6. Accuracy for different feature sets using LOSO evaluation.
vs. ‘‘High Stress”). It can be seen that the ‘‘Low stress” is almost
equally confused with ‘‘No stress” and ‘‘High stress”. This is
expected since the data is analyzed as a continuous stream using
a sliding window of 5 min with 2.5 min overlap, so two neighbor-
ing data windows with (possibly) different labels always have 50%
equal data. Additionally, it is almost impossible to define a strict
border between different stress events.
4. Stress detection in unconstrained environments

4.1. Real-life experimental setup

For collecting real-life data we used a combination of a stress
log and Ecological Momentary Assessment (EMA) prompts imple-
mented on a smartphone. The EMA prompts are questionnaires
displayed at a random time of the day. The subjects had to answer
4–6 EMA prompts per day (with at least 2 h between consecutive
prompts), and in the case of a stressful situation, they logged the
start, the duration and the level of stress on a scale from 1 to 5
(1 to 2 – no stress, 3 to 5 – stress). The answers of the EMA prompts
and the stress log were used to label the real-life data. Table 6 pre-
sents an overview of the real-life data. The first two rows present
the number of the participants and the age structure. The final
two rows present the duration of the data in minutes after labelling
it with the corresponding label, ‘‘No Stress” or ‘‘Stress”.
Table 6
Real-life data overview. Participant information and duration of
labeled data for No Stress/Stress.

Data

# Participants 5
Age Mean 28 ± 4.3

No Stress – overall duration 1216 h
Stress – overall duration 111 h



Fig. 7. Splitting the real-life data into events.
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To evaluate the method on the real-life data we had to address
the well-known problem of subjective stress labelling [8]. In addi-
tion to the perception of stress being subjective, a time lag is often
a problem.

For example, the user marked that a stressful event occurred
from 14:00 to 15:00, but this happened to be a scheduled exam,
and the physiological arousal (which the sensors capture) started
at 13:00. So, if we run the laboratory stress-detection classifier, it
would start to predict stress at 13:00 (which is correct), but the
labels of the data would say that the stress event started at
14:00. This also goes the other way around – users may mark that
a stressful situation started before it actually did when labelling
retroactively.

Fig. 7 depicts two scenarios for splitting the real-life data into
events. In scenario 1, the user answered an EMA questionnaire at
time X with a stress level higher than 2. The period X � 10 min
to X + 10 min is labeled as stress and one event is created from this
data. In scenario 2, the user logged a stressful situation that started
at time Y and ended at time Z. The period Y � 10 min to Z + 10 min
is labeled as stress and one event is created from this data. In both
scenarios, the rest of the data is split into events with a duration of
10 min and labeled as no stress. There is no information about the
duration of the events in the features used by the context-based
classifier, thus the event splitting does not implicitly indicate the
type of the event.
4.2. Method for stress detection in unconstrained environments

The proposed context-based method is presented in Fig. 8. The
method consists of three main ML components: the laboratory
stress detector, an activity-recognition classifier and a context-
based stress detector. The following subsections explain each ML
component in detail.
4.2.1. Laboratory stress detector
The details about the laboratory-stress detector are provided in

Section 3, where we explain the complete approach for stress
detection in laboratory conditions (constrained environments).
The laboratory-stress detector is built on the laboratory data and
Fig. 8. Context-based method for stress detectio
uses a data window of 5 min with 50% overlap (thus it provides a
prediction every 2.5 min). The output of the laboratory-stress
detector is provided as an input to the context-based stress
detector.
4.2.2. Activity-recognition classifier
It is important for a stress-detection system to be aware of the

user’s physical activity, since physical activity elicits physiological
arousal similar to the physiological arousal elicited by psychologi-
cal stress. For this purpose, the Empatica device provides accelera-
tion data, which has proven to be successful for recognizing
activities [28,46]. A detailed description of the presented ML
approach to activity recognition can be found in one of our previ-
ous papers [47]. The method is based on the award-wining
approach from the EvAAL activity recognition competition [28].

The activity-recognition classifier outputs an activity every 2 s.
The outputs are aggregated over the data window of 5 min, by
changing each to ‘‘an activity level” (lying = 1, sitting = 2, stand-
ing = 3, walking = 4, running/cycling = 5) and averaging over the
window. The average activity level is passed as a feature to the
context-based stress detector.

Even though there are a lot of other activities in real life, the six
activities that the activity recognizer provides are enough to repre-
sent the user’s activity level because the predictions are averaged
over a period of 5 min. In more active periods the predictions with
higher activity levels will predominate, and in less active periods
the activities with lower activity levels will predominate.
4.2.3. Context-based stress detector
The context-based stress detector was developed to distinguish

between psychological stress in real life and many situations
which induce a similar physiological arousal (e.g., exercise, eating,
hot weather, etc.). It classifies every 10 min as stressful or non-
stressful.

As features, it uses statistical functions (mean, max and aver-
age) over the 4 outputs of the laboratory stress detector, the previ-
ous output of the context-based detector and the 20th percentile of
each sensor data (HR, BVP, IBI, ST and EDA signal). The 20th per-
centile was used to provide some information from each sensor
n in unconstrained environments (real life).
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Fig. 9. Precision-recall curve for the best performing model.
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to the context-based classifier. In addition we added the features
mostly used in the related work for stress detection – standard
deviation of the IBI samples and features based on the EDA peak
analysis.

The context features are: whether there was any high-intensity
activity in the last 30 min, whether there was any medium-
intensity activity in the last 20 min, the hour of the day, and the
type of the day – workday/weekend.

4.3. Real-life experimental results

On the real-life data we performed two types of experiments:
aggregation experiments and context vs. no-context experiments.
The aggregation experiments provide information about the influ-
ence of the size of the aggregating window used for extracting fea-
tures (contexts) on the performance of the context-based classifier.
The context vs. no-context experiments provide a comparison
between the context-based and a no-context approach, where
the no-context method is the laboratory stress detector applied
directly on the real-life data. For both experiments we used LOSO
evaluation and the evaluation metrics described in Section 3.3.8.

4.3.1. Aggregation experiments
For the aggregation experiments we varied the size of the

aggregating window from 10 min to 30 min, and monitored the
performance of several machine-learning algorithms. The results
are presented in Table 7. The rows represent the size of the aggre-
gating window, and the columns represent the mean F-score
(mean value of F-score for ‘‘no stress” and F-score for ‘‘stress”)
for each of the algorithms. In general, the algorithms perform bet-
ter for a smaller aggregation window (10–17.5 min). This may be
because the context (e.g., the activity of the user) is changing in
a time-span of 10–15 min. The best performing algorithm is the
Decision Tree which is interesting since it is also one of the sim-
plest algorithms in the experiments.

4.3.2. Context vs. no-context
In these experiments we took the best-performing model from

the aggregating experiments (DT with an aggregating window of
10 min) and compared its performance to a no-context classifier.
The results are presented in Table 8. It can be seen that the
context-based classifier performs significantly better than the
Table 7
Mean F-score on the real-life data for varying aggregation-window size and varying ML a

Aggregation-window size in seconds Decision Tree Ensemble Selection Ran

10 0.90 0.80 0.74
12.5 0.85 0.75 0.73
15 0.84 0.74 0.75
17.5 0.86 0.74 0.78
20 0.73 0.69 0.71
22.5 0.72 0.62 0.65
25 0.68 0.63 0.62
27.5 0.68 0.62 0.66

Table 8
Confusion matrices and performance measures for Context vs no-context approach.

No-Context

No Stress S

No Stress 3308 1
Stress 34 1

Precision 0.99 0
Recall 0.67 0
F1 score 0.80 0
Mean F1 score 0.47
no-context classifier. For example, the context-based classifier
achieves a mean F-score of 0.9 (mean value of 0.99 and 0.81) and
the no-context classifier achieves a mean F-score of 0.47 Table 7.

Additionally, the confusion matrix ‘‘with context” in shows that
the Precision (95%) of the model is higher than the Recall (70%) by
25 percentage points. This means that the model detects (recalls)
70% of the stress events with a precision of 95%.

To explore the link between the precision and recall we present
the precision-recall curve in Fig. 9. A precision-recall curve shows
our model’s performance for a varying decision threshold.

A low decision threshold means that the model would classify
each instance as ‘‘stress”, thus it would have a high recall, but also
a low precision because all the ‘‘no stress” instances would be clas-
sified as ‘‘stress”. On the contrary, a high decision threshold leads
to a conservative model, meaning it would classify an instance as
‘‘stress” only when it is completely sure.

The precision-recall curve in Fig. 9 shows that a recall higher
than 70% is achieved only when the model’s precision is lower than
60%. The highest performance achieved by the model is: precision
98% and recall 70%.
5. Visualization of stress events

In the previous sections we overviewed, proposed and eval-
uated machine learning methods for stress detection in the
lgorithms using LOSO evaluation.

dom Forest Bagging SVM KNN Naïve Bayes Boosting Majority

0.78 0.69 0.69 0.58 0.51 0.49
0.76 0.71 0.71 0.60 0.49 0.49
0.75 0.67 0.68 0.60 0.49 0.49
0.77 0.70 0.70 0.58 0.48 0.48
0.69 0.68 0.68 0.59 0.51 0.48
0.61 0.57 0.64 0.57 0.51 0.48
0.59 0.61 0.65 0.60 0.48 0.48
0.60 0.55 0.63 0.59 0.54 0.48

With Context

tress No Stress Stress

630 4932 6
25 47 112

.07 0.99 0.95

.79 1.00 0.70

.13 0.99 0.81
0.9



Fig. 10. Daily level of stress for Subject 2, who provided the most data. Each square represents the stress intensity on a scale from 0 to 1 for the corresponding hour in one day.

Fig. 11. Average level of stress per hour for each of the five subjects.
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laboratory and in real life. However, in order for our methods
to be useful, they should be integrated into a larger system
that helps people to overcome stressful situations. Such a sys-
tem can help users to overview stressful events, provide health
advice and suggest stress-relieving exercises when stress is
detected. In the next section we will describe how our
context-based method for stress detection can be utilized in
an e-health system.

Fig. 10 presents a visualization of the output of the context-
based stress detection method. The data is from Subject 2, who
provided us with the most data. The x-axis is the day on which
the data is collected; the y-axis is the hour of the day, and the color
corresponds to the intensity of stress. Thus, each square represents
the stress intensity of the corresponding hour in one day. The deci-
sion whether there is stress is provided by the context-based
model, and the intensity is calculated using the predictions of the
laboratory model (since the context-based model is a binary clas-
sifier). This type of visualization provides information about stress-
ful patterns throughout the day.

Fig. 11 presents another visualization of the output of the
context-based stress detection. On the x-axis is the hour of the
day and on the y-axis is the stress level. Each line represents
one subjects marked as S1-S5. For example for Subject 2 (S2),
it can be seen that the subject’s stressful events are between
13:00 and 20:00. The subject commented that the figure helped
him to recall that the ‘‘stressful” hours are usually his late-
working hours and over-time working hours. To reduce the
stressful events he may start going to work earlier and stop
working overtime.
6. Conclusion

The objective of this study was to develop a method for stress
detection which can accurately, continuously and unobtrusively
monitor psychological stress in real life. At the beginning, three
challenges were identified: (i) subjectivity, (ii) fuzzy ground truth
and (iii) no methods for direct monitoring of stress. For addressing
the subjectivity and the fuzzy ground truth we used standardized
scenarios for inducing stress, standardized questionnaire (STAI),
and in the real-life experiments we used EMA in combination with
a stress log. In addition, we proposed a segmentation method for
splitting the real-life data into stress/no stress events. The third
challenge (monitoring the other components of the stress
response) will be addressed in future work.

Having these challenges in mind, the problem of stress detec-
tion was first analyzed under laboratory conditions using off-the-
shelf wrist device equipped with bio-sensors, and the extracted
laboratory knowledge was applied to real-life data. In real life,
the laboratory-stress detector achieved a mean F-score of 0.47
and a precision of 7% for detecting stress events, which is not
acceptable in reality. However, when additional context informa-
tion was added, the context-based method achieved a mean F-
score of 0.9 and a precision of 95%. These results are significantly
better and indicate possible use in real life. The context informa-
tion was required to distinguish between psychological stress in
real life and the many situations which induce a similar physiolog-
ical arousal (e.g., exercise, eating, hot weather, etc.).

Our system consist of a wrist device and a processing unit
which may be a smartphone, tablet, PC, etc. The Empatica wrist
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device provides BVP, EDA, ST, ACC, HR and IBI data, and costs
around 1000€. However, at the time of performing the experi-
ments, it was the only wrist device that fulfilled the requirements.
Nowadays, there are cheaper devices, e.g., Microsoft Band, that
provide similar data. We are currently running experiments with
the Microsoft Band in order to re-evaluate the method. Due to
the fast progress of the electronics, one might expect additional
devices that would be capable of providing the sensory data
required by the method.

6.1. Limitations

The three main limitations of the method are:

� Sample size. Even though the proposed context-based method
for stress detection was tested on 55 days of real-life data, this
data comes from only 5 subjects. To confirm the obtained
results we need a bigger population.

� Age structure. The proposed stress detection method is highly
dependent on physiological signals that depend on age, sex
and physical fitness. However, the experimental data in our
study, both the laboratory and real-life data, belong to healthy
male subjects with mean age 28 and standard deviation 4. To
check the robustness of the method it needs to be tested on a
bigger population with a higher variety in terms of health, sex
and age.

� Devices. The overall data in the study is collected using the
Empatica device, thus the proposed context-based method is
biased towards that device.

The three limitations of the method are considered in the Fit4-
Work project [3]. Data is being gathered from a bigger population
and a higher variety in terms of health, age and gender. Addition-
ally, the Microsoft Band will be used as a wrist device for collecting
the data. Finally, the proposed context-basedmethod will be tested
using the data gathered in the project trials.

6.2. Future work

The proposed method can be integrated into a system that helps
people to overcome stressful situations. Such a system may over-
view stressful events, provide health advice and suggest stress-
relieving exercises upon detected stress. For example, the method
will be integrated in the Fit4Work system [3] as a part of a project
that aims to develop an easy-to-use and unobtrusive system to
support older workers in reducing and managing physical and
mental stress resulting from their occupation.

In addition, in the future we plan to implement:

� Dynamic and richer contexts. We proved that context is cru-
cial for improving the performance of the context-based stress
detection method. For now, it uses the activity of the user and
other date-time contexts (e.g., the hour of the day, the day of
the week, etc.). The context-based models perform better with
contexts extracted over smaller data windows (10–17.5 min)
compared to larger data windows (20–30 min). This may be
because the context is changing (e.g., the activity of the user)
in a time-span of 10–15 min. Instead of using a fixed data win-
dow for extracting the context, a dynamic window can be uti-
lized which changes with respect to the change in the context.

� Personalization. Stress is subjective, i.e., personal. This is con-
firmed both by the definition of stress and by the related work.
Personalization can be achieved by using person-specific nor-
malized data for extracting features. In addition to the person-
alized features, personalized ML models can be utilized either
by adaptation of existing ML models (e.g., by using transfer
learning [48]) or by building completely new models on a
labeled data provided by the users.

� Monitoring the other components of the stress response. To
monitor the other two components of the stress response
(behavioral and affective component) we plan to incorporate
methods for monitoring subjects’ emotional state [49], and
stress related behavioral changes [25,26].

� Internet of things and smart cities. Can a stress-detection
module be a part of an Internet of things network in a smart-
city system? For example, by monitoring the stress level of pub-
lic bus drivers, Rodrigues et al. [50] managed to construct a
stress map of a city which can lead to better management of
public transportation. Similarly, a stress map can be constructed
based on different objectives, e.g., users’ occupation, which can
lead to recognizing the most stressful occupations, those that
may require medical attention.

� Finally, the dataset used in the study will be online in our AmI
repository [51], which is another contribution in the field of
stress detection in laboratory and real-life environments, con-
sidering the amount of data available.
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